High Transport Si/SiGe Heterostructures for CMOS Transistors with Orientation and Strain Enhanced Mobility
نویسندگان
چکیده
We have demonstrated high mobility MOS transistors on high quality epitaxial SiGe films selectively grown on Si (100) substrates. The hole mobility enhancement afforded intrinsically by the SiGe channel (60%) is further increased by an optimized Si cap (40%) process, resulting in a combined ∼100% enhancement over Si channels. Surface orientation, channel direction, and uniaxial strain technologies for SiGe channels CMOS further enhance transistor performances. On a (110) surface, the hole mobility of SiGe pMOS is greater on a (110) surface than on a (100) surface. Both electron and hole mobility on SiGe (110) surfaces are further enhanced in a 〈110〉 channel direction with appropriate uniaxial channel strain. We finally address low drive current issue of Ge-based nMOSFET. The poor electron transport property is primarily attributed to the intrinsically low density of state and high conductivity effective masses. Results are supported by interface trap density (Dit) and specific contact resistivity (ρc). key words: high transport, SiGe, orientation, strain, heterostructure
منابع مشابه
High Mobility Strained Si/SiGe Heterostructure MOSFETs
Strained Siand SiGe-based heterostructure MOSFETs grown on relaxed SiGe virtual substrates exhibit dramatic electron and hole mobility enhancements over bulk Si, making them promising candidates for next generation CMOS devices. The most heavily investigated heterostructures consist of a single strained Si layer grown upon a relaxed SiGe substrate. While this configuration offers significant pe...
متن کاملMOSFET Channel Engineering using Strained Si, SiGe, and Ge Channels
Biaxial tensile strained Si grown on SiGe virtual substrates will be incorporated into future generations of CMOS technology due to the lack of performance increase with scaling. Compressively strained Ge-rich alloys with high hole mobilities can also be grown on relaxed SiGe. We review progress in strained Si and dual channel heterostructures, and also introduce high hole mobility digital allo...
متن کاملTransport in Thin-Body MOSFETs Fabricated in Strained Si and Strained Si/SiGe Heterostructures on Insulator
The combination of channel mobility enhancement techniques such as strain engineering, with non-classical MOS device architectures, such as ultra-thin body or multiple-gate structures, offers the promise of maximizing current drive while maintaining the electrostatic control required for aggressive device scaling in future CMOS technology nodes. Two structures that combine strain engineering an...
متن کاملSilicon-Germanium Interdiffusion and Its Impacts on Enhanced Mobility MOSFETs
As complementary metal-oxide-semiconductor field-effect transistors (MOSFETs) scale, strained Si and SiGe technology have received more attention as a means of enhancing performance via improved carrier mobility. One of the biggest challenges for strained Si and SiGe technology is Si-Ge interdiffusion during thermal processing. Two different aspects of Si-Ge interdiffusion are explored in this ...
متن کاملHigh mobility Si1-xGex PMOS transistors to 5K
P-channel Sil-@ex MOSFETs with peak Ge content x =0.3, 0.4, and 0.5 have been fabricated via MBE and experimentally characterized from room temperature down to 5K. Mobility enhancements relative to identically processed Si controls were largest at the lowest tempera2 tures. The highest mobility measured, pm = 1622 cm N.sec for the x = 0.3 SiGe device, was approximately a factor of four higher t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 94-C شماره
صفحات -
تاریخ انتشار 2011